11 resultados para E1

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative ease to concentrate and purify adenoviruses, their well characterized mid-sized genome, and the ability to delete non-essential regions from their genome to accommodate foreign gene, made adenoviruses a suitable candidate for the construction of vectors. The use of adenoviral vectors in gene therapy, vaccination, and as a general vector system for expressing foreign genes have been documented for some time. In this study, the objective was to rescue a BAV3 E1 or E3 recombinant vector carrying the kanamycin resistant gene, a dominant selectable marker with useful applications in studying vectored gene expression in mammalian cells. To accomplish the objective of this study, more information about BAV3 DNA sequences was required in order to make the manipulation of the virus genome accessible. Therefore, sequencing of the BAV3 genome from 1 1 .7% to 30.8% was carried out. Analysis of the determined sequences revealed the primary structure of important viral gene products coded by E2 including BAV3 DNA pol and precursor to terminal protein. Comparative analysis of these proteins with their counterparts from human and non human adenoviruses revealed important insights as to the evolutionary lineage of BAV3. In order to insert the kanamycin resistance gene in either E1 or E3, it was necessary to delete BAV3 sequences to accommodate the foreign gene so as not to exceed the limit of the packaging capacity of the virus. To construct a recombinant BAV3 in which a foreign gene was inserted in the deleted E1 region, an E1 shuttle vector was constructed. This involved the deletion from the viral sequences a region between 1.3% to 9% and inserting the kanamycin resistance gene to replace the deletion. The E1 shuttle vector contained the left (0%- 53.9%) segment of the genome and was expected to generate BAV3 recombinants that can be grown and propagated in cells that can complement the missing E1 functions. To construct a similar shuttle vector for E3 deletion, DNA sequences extending from 78.9% to 82.5% (1281 bp) were deleted from within the E3 region that had been cloned into a plasmid vector. The deleted region corresponds to those that have been shown to be non-essential for viral replication in cell culture. The resulting plasmid was used to construct another recombinant plasmid with BAV3 DNA sequences extending from 37.1% to 100% and with a deletion of E3 sequences that were replaced by kanamycin resistance gene. This shuttle plasmid was used in cotransfections with digested viral DNA in an attempt to rescue a recombinant BAV3 carrying the kanamycin resistance gene to replace the deleted E3. In spite of repeated attempts of transfection, El or E3 recombinant BAV3 were not isolated. It seems that other approaches should be applied to make a final conclusion on BAV3 infectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenoviral vectors are currently the most widely used gene therapeutic vectors, but their inability to integrate into host chromosomal DNA shortened their transgene expression and limited their use in clinical trials. In this project, we initially planned to develop a technique to test the effect of the early region 1 (E1) on adenovirus integration by comparing the integration efficiencies between an E1-deleted adenoviral vector (SubE1) and an Elcontaining vector (SubE3). However, we did not harvest any SubE3 virus, even if we repeated the transfection and successfully rescued the SubE1 virus (2/4 transfections generated viruses) and positive control virus (6/6). The failure of rescuing SubE3 could be caused by the instability of the genomic plasmid pFG173, as it had frequent intemal deletions when we were purifying It. Therefore, we developed techniques to test the effect of E1 on homologous recombination (HR) since literature suggested that adenovirus integration is initiated by HR. We attempted to silence the E1 in 293 cells by transfecting E1A/B-specific small interfering RNA (siRNA). However, no silenced phenotype was observed, even if we varied the concentrations of E1A/B siRNA (from 30 nM to 270 nM) and checked the silencing effects at different time points (48, 72, 96 h). One possible explanation would be that the E1A/B siRNA sequences are not potent enough to Induce the silenced phenotype. For evaluating HR efficiencies, an HR assay system based on bacterial transfonmatJon was designed. We constmcted two plasmids ( designated as pUC19-dl1 and pUC19-dl2) containing different defective lacZa cassettes (forming white colonies after transformation) that can generate a functional lacZa cassette (forming blue colonies) through HR after transfecting into 293 cells. The HR efficiencies would be expressed as the percentages of the blue colonies among all the colonies. Unfortunately, after transfonnation of plasmid isolated from 293 cells, no colony was found, even at a transformation efficiency of 1.8x10^ colonies/pg pUC19, suggesting the sensitivity of this system was low. To enhance the sensitivity, PCR was used. We designed a set of primers that can only amplify the recombinant plasmid fomied through HR. Therefore, the HR efficiencies among different treatments can be evaluated by the amplification results, and this system could be used to test the effect of E1 region on adenovirus integration. In addition, to our knowledge there was no previous studies using PCR/ Realtime PCR to evaluate HR efficiency, so this system also provides a PCR-based method to carry out the HR assays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recombinant human adenovirus (Ad) vectors are being extensively explored for their use in gene therapy and recombinant vaccines. Ad vectors are attractive for many reasons, including the fact that (1) they are relatively safe, based on their use as live oral vaccines, (2) they can accept large transgene inserts, (3) they can infect dividing and postmitotic cells, and (4) they can be produced to high titers. However, there are also a number of major problems associated with Ad vectors, including transient foreign gene expression due to host cellular immune responses, problems with humoral immunity, and the creation of replication competent adenoviruses (RCA). Most Ad vectors contain deletions in the E1 region that allow for insertion of a transgene. However, the E1 gene products are required for replication and thus must be supplied in trans by a helper ceillille that will allow for the growth and packaging of the defective virus. For this purpose the 293 cell line (Graham et al., 1977) is used most often; however, homologous recombination between the vector and the cell line often results in the generation of RCA. The presence of RCA in batches of adenoviral vectors for clinical use is a safety risk because tlley . may result in the mobilization and spread of the replication-defective vector viruses, and in significant tissue damage and pathogenicity. The present research focused on the alteration of the 293 cell line such that RCA formation can be eliminated. The strategy to modify the 293 cells involved the removal of the first 380 bp of the adenovirus genome through the process of homologous recombination. The first step towards this goal involved identifying and cloning the left-end cellular-viral jUl1ction from 293 cells to assemble sequences required for homologous recombination. Polymerase chain reaction (PCR) was performed to clone the junction, and the clone was verified through sequencing. The plasn1id PAM2 was then constructed, which served as the targeting cassette used to modify the 293 cells. The cassette consisted of (1) the cellular-viral junction as the left-end region of homology, (2) the neo gene to use for positive selection upon tranfection into 293 cells, (3) the adenoviral genome from bp 380 to bp 3438 as the right-end region of homology, and (4) the HSV-tk gene to use for negative selection. The plasmid PAM2 was linearized to produce a double strand break outside the region of homology, and transfected into 293 cells using the calcium-phosphate technique. Cells were first selected for their resistance to the drug G418, and subsequently for their resistance to the drug Gancyclovir (GANC). From 17 transfections, 100 pools of G418f and GANCf cells were picked using cloning lings and expanded for screening. Genomic DNA was isolated from the pools and screened for the presence of the 380 bps using PCR. Ten of the most promising pools were diluted to single cells and expanded in order to isolate homogeneous cell lines. From these, an additional 100 G41Sf and GANef foci were screened. These preliminary screening results appear promising for the detection of the desired cell line. Future work would include further cloning and purification of the promising cell lines that have potentially undergone homologous recombination, in order to isolate a homogeneous cell line of interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both El MS and FAB MS behavior of two groups of compounds, aryltin and ferrocene compounds, have been studied. For the aryltin compounds, the effect of substituent group position, substituent group type and ligand type on the El spectra have been explored in the El MS studies. The fragmentation mechanism has been investigated under El with linked scans, such as fragment ion scans(BJE), parent ion scans(B2JE) and constant neutral radical loss scans(B2(1-E)JE2). In the FAB MS studies, matrix optimization experiments have been carried out. The positive ion FAB MS studies focused on the effect of substituent group position, substituent group type and ligand type on the spectra. The fragmentation mechanisms of all the samples under positive ion FAB have been studied by means of the linked scans. The CA positive ion FAB fragmentation studies were also carried out for a typical sample. Negative ion FAB experiments of all the compounds have been done. And finally, the comparison of the El MS and FAB MS has been made. For ferrocenes, the studies concentrated on the fragmentation mechanism of each compound under El with linked scan techniques in the first field-free region and the applicability of positive/negative ion FAB MS to this group of compounds. The fragmentation mechanisms under positive ion FAB of those ferrocenes which can give positive ion FAB MS spectra were studied with the linked scan techniques. The CA +ve F AB fragmentation studies were carried out for a typical sample. Comparison of the E1 MS and FAB MS has been made.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adenoviruses are nonenveloped icosahedral shaped particles. The double stranded DNA viral genome is divided into 5 major early transcription units, designated E1 A, E1 B, and E2 to E4, which are expressed in a regulated manner soon after infection. The gene products of the early region 3 (E3), shown to be nonessential for viral replication in vitro, are believed to be involved in counteracting host immunosurveillance. In order to sequence the E3 region of Bovine adenovirus type 2 (BAV2) it was necessary to determine the restriction map for the plasmid pEA48. A physical restriction endonuclease map for BamHl, Clal, Eco RI, Hindlll, Kpnl, Pstt, Sail, and Xbal was constructed. The DNA insert in pEA48 was determined to be viral in origin using Southern hybridization. A human adenovirus type 5 recombinant plasmid, containing partial DNA fragments of the two transcription units L4 and L5 that lie just outside the E3, was used to localize this region. The recombinant plasmid pEA was subcloned to facilitate sequencing. The DNA sequences between 74.8 and 90.5 map units containing the E3, the hexon associated protein (pVIII), and the fibre gene were determined. Homology comparison revealed that the genes for the hexon associated pV11I and the fibre protein are conserved. The last 70 amino acids of the BAV2 pV11I were the most conserved, showing a similarity of 87 percent with Ad2 pV1I1. A comparison between the predicted amino acid sequences of BAV2 and Ad40, Ad41 , Ad2 and AdS, revealed that they have an identical secondary structure consisting of a tail, a shaft and a knob. The shaft is composed of 22, 15 amino acid motifs, with periodic glycines and hydrophobic residues. The E3 region was found to consist of about 2.3 Kbp and to encode four proteins that were greater than 60 amino acids. However, these four open reading frames did not show significant homology to any other known adenovirus DNA or protein sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adenoviruses are non-enveloped icosahedral-shaped particles which possess a double-stranded DNA genome. Currently, nearly 100 serotypes of adenoviruses have been identified, 48 of which are of human origin. Bovine adenoviruses (BAVs), causing both mild respiratory and/or enteral diseases in cattle, have been reported in many countries all over the world. Currently, nine serotypes of SAVs have been isolated which have been placed into two subgroups based on a number of characteristics which include complement fixation tests as well as the ability to replicate in various cell lines. Bovine adenovirus type 2 (BAV2), belonging to subgroup I, is able to cause pneumonia as well as pneumonic-like symptoms in calves. In this study, the genome of BAV2 (strain No. 19) was subcloned into the plasmid vector pUC19. In total, 16 plasmids were constructed; three carry internal San fragments (spanning 3.1 to 65.2% ), and 10 carry internal Pstl fragments (spanning 4.9 to 97.4%), of the viral genome. Each of these plasmids was analyzed using twelve restriction endonucleases; BamHI, CiaI, EcoRl, HiOOlll, Kpnl, Noll, NS(N, Ps~, Pvul, Saj, Xbal, and Xhol. Terminal end fragments were also cloned and analyzed, sUbsequent to the removal of the 5' terminal protein, in the form of 2 BamHI B fragments, cloned in opposite orientations (spanning 0 to 18.1°k), and one Pstll fragment (spanning 97.4 to 1000/0). These cloned fragments, along with two other plasmids previously constructed carrying internal EcoRI fragments (spanning 20.6 to 90.5%), were then used to construct a detailed physical restriction map using the twelve restriction endonucleases, as well as to estimate the size of the genome for BAV2(32.5 Kbp). The DNA sequences of the early region 1 (E1) and hexon-associated gene (protein IX) have also been determined. The amino acid sequences of four open reading frames (ORFs) have been compared to those of the E1 proteins and protein IX from other Ads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recombinant Adenoviruses (Ads) have been shown to have potential applications in three areas: gene therapy, high level protein expression and recombinant vaccines.' At least three different locations within the Ad genome can be deleted and subsequently used for the insertion of foreign sequences. These include the Early 3 (E3), Early 1 (E1) and Early 4 (E4) regions. Viral vectors of this type have been well studied in Human Ads 2 and 5, however one has not yet been constructed for Bovine Adenovirus Type 2 (BAV2). The E3 region is located between 76.6 and 86 m.u. on the r-strand and is transcribed in a rightward direction. The gene products of the Early 3 region (E3) have been shown to be non-essential for viral replication, in vitro, but are required for host immunosurveillance. This study represents the cloning and reconstitution of a BAV2 E3 deletion mutant. A deletion of 1800bp was made within the E3 region of BAV2 and the thymidine kinase gene was subsequently inserted in the deleted area . . The plasmid pdlE3-4tk1 (23.4Kbp) was constructed and used to to facilitate homologous recombination with the wild type BAV2 to produce a mutant. Southern Blotting and Hybridization results suggest the presence of a BAV2 E3 deletion mutant with thymidine kinase sequences present. The E4 region of Human Adenovirus types 2 and 5 is located at the extreme right end of the genome (91.3 map units - 99.1 map units) and is transcribed in a leftward direction giving rise to a complicated set of differentially spliced mRNAs. Essentially there are 7 open reading frames (ORFs) encoding for at least 7 polypeptides. The gene products encoded by the E4 region have been shown to be essential for the expression of late viral genes, host cell shutoff and normal viral growth. We have cloned and sequenced the right end segment between 90.5 map units and 100 map units of the BAV2 genome. The results show several open reading frames which encode polypeptides exhibiting homology to three polypeptides encoded by the E4 region of human adenovirus type 2. These include the 14kDa protein encoded by ORF1, the 34kDa protein encoded by ORF6 and the 13kDa protein encoded by ORF3. The nucleotide sequence, restriction enzyme map, and ORF map of the E4 region could be very useful in future molecular manipulation of this region and could possibly explain the slow growth rate of BAV2 in MDBK cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human adenoviruses (Ads), members of the family adenoviridae, are medium-sized DNA viruses which have been used as valuable research tools for the study of RNA processing, oncogenic transformation, and for the development of viral vectors for use in gene delivery and immunization technology. The left 12% of the linear Ad genollle codes for products which are necessary for the efficient replication of the virus, as well as being responsible for the forlllation of tumors in animallllodels. The establishlllent of the 293 cell line, by immortalization of human embryonic kidney cells with th~ E1 region of Ad type S (AdS), has facilitated extensive manipulation of the Ads and the development of recombinant Ad vectors. The study of bovine adenoviruses (BAVs), which cause mild respiratory and gastrointestinal infections in cattle has, on the other hand, been limited primarily to that of infectivity, immunology and clinicallllanifestations. As a result, any potential as gene delivery vehicles has not yet been realized. Continued research into the molecular biolo~gy of BAVs and the development of recolllbinant vectors would benefit from the development of a cell line analogous to that of the 293 cells. In an attelllpt to establish such a cell line, the recombinant plaslllid pKC-neo was constructed, containing the left 0-19.7% of the BAV type 3 (BAV3) genome, and the selectable marker for resistance to the aminoglycoside G418, a neomycin derivative. The plasmid construct was then used to transfect both the Madin-Darby bovine kidney (MDBK) -iicell line and primary bovine lung cells, after which G418-resistant foci were selected for analysis. Two cell lines, E61 (MDBK) and E24 (primary lung), were subsequently selected and analysed for DNA content, revealing the presence of the pKC-neo sequences in their respective genomes. In addition, BAV3 RNA transcripts were detected in the E61 cells. Although the presence of E1 products has yet to be confirmed in both cell lines, the E24 cells exhibit a phenotype characteristic of partial transformation by E1. The apparent immortalization of the primary lung cells will permit exploitation of their ability to take up exogenous DNA at high efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1 map :|bdigital, JPEG file

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) is the causative agent of Hepatitis C, a serious global health problem which results in liver cirrhosis and hepatocellular carcinoma. Currently there is no effective treatment or vaccine against the virus. Therefore, development of a therapeutic vaccine is of paramount importance. In this project, three alternative approaches were used to control HCV including a DNA vaccine, a recombinant viral vaccine and RNA interference. The first approach was to test the effect of different promoters on the efficacy of a DNA vaccine against HCV. Plasmids encoding HCV-NS3 and E1 antigens were designed under three different promoters, adenoviral E1A, MLP, and CMV ie. The promoter effect on the antigen expression in 293 cells, as well as on the antibody level in immunized BALB/c mice, was evaluated. The results showed that the antigens were successfully expressed from all vectors. The CMV ie promoter induced the highest antigen expression and the highest antibody level. Second, the efficiency of a recombinant adenovirus vaccine encoding HCV-NS3 was compared to that of a HCV-NS3 plasmid vaccine. The results showed that the recombinant adenovirus vaccine induced higher antibody levels as compared to the plasmid vaccine. The relationship between the immune response and miRNA was also evaluated. The levels of mir-181, mir-155, mir-21 and mir-296 were quantified in the sera of immunized animals. mir-181 and mir-21 were found to be upregulated in animals injected with adenoviral vectors. Third, two recombinant adenoviruses encoding siRNAs targeting both the helicase and protease parts of the NS3 region were tested for their ability to inhibit NS3 expression. The results showed that the siRNA against protease was more effective in silencing the HCV-NS3 gene in a HCV replicon cell line. This result confirmed the efficiency of adenovirus for siRNA delivery. These results confirmed that CMV ie is optimum promoter for immune response induction. Adenovirus was shown to be an effective delivery vector for antigens or siRNAs. In addition, miRNAs were proved to be involved in the regulation of immune response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endonuclease G (EndoG) is a well conserved mitochondrial nuclease with dual lethal and vital roles in the cell. It non-specifically cleaves endogenous DNA following apoptosis induction, but is also active in non-apoptotic cells for mitochondrial DNA (mtDNA) replication and may also be important for replication, repair and recombination of genomic DNA. The aim of our study was to examine whether EndoG exerts similar activities on exogenous DNA substrates such as plasmid DNA (pDNA) and viral DNA vectors, considering their importance in gene therapy applications. The effects of EndoG knockdown on pDNA stability and levels of encoded reporter gene expression were evaluated in the cervical carcinoma HeLa cells. Transfection of pDNA vectors encoding short-hairpin RNAs (shRNAs) reduced levels of EndoG mRNA and nuclease activity in HeLa cells. In physiological circumstances, EndoG knockdown did not have an effect on the stability of pDNA or the levels of encoded transgene expression as measured over a four day time-course. However, when endogenous expression of EndoG was induced by an extrinsic stimulus (a cationic liposome transfection reagent), targeting of EndoG by shRNA improved the perceived stability and transgene expression of pDNA vectors. Therefore, EndoG is not a mediator of exogenous DNA clearance, but in non-physiological circumstances it may non-specifically cleave intracellular DNA regardless of its origin. To investigate possible effects of EndoG on viral DNA vectors, we constructed and evaluated AdsiEndoG, a first generation adenovirus (Ad5 ΔE1) vector encoding a shRNA directed against EndoG mRNA, along with appropriate Ad5 ΔE1 controls. Infection of HeLa cells with AdsiEndoG at a multiplicity of infection (MOI) of 10 p.f.u./cell resulted in an early cell proliferation defect, absent from cells infected at equivalent MOI with control Ad5 ΔE1 vectors. Replication of Ad5 ΔE1 DNA was detected for all vectors, but AdsiEndoG DNA accumulated to levels that were 50 fold higher than initially, four days after infection, compared to 14 fold for the next highest control Ad5 ΔE1 vector. Deregulation of the cell cycle by EndoG depletion, which is characterized by an accumulation of cells in the G2/M transition, is the most likely reason for the observed cell proliferation defect. The enhanced replication of AdsiEndoG is consistent with this conclusion, as Ad5 ΔE1 DNA replication is intimately related to cell cycling and prolongation or delay in G2/M greatly enhances this process. Furthermore, infection of HeLa with AdsiEndoG at MOI of 50 p.f.u./cell resulted in an almost complete disappearance of viable, adherent tumour cells from culture, whereas almost a third of the cells were still adherent after infection with control Ad5 ΔE1 vectors, relative to the non-infected control. Therefore, targeting of EndoG by RNAi is a viable strategy for improving the oncolytic properties of first generation adenovirus vectors. In addition, AdsiEndoG-mediated knockdown of EndoG reduced homologous recombination between pDNA substrates in HeLa cells. The effect was modest but, nevertheless demonstrated that the proposed role of EndoG in homologous recombination of cellular DNA also extends to exogenous DNA substrates.